Exercise 12

Let $\mathbf{v}=(2,3)$. Suppose $\mathbf{w} \in \mathbb{R}^{2}$ is perpendicular to \mathbf{v}, and that $\|\mathbf{w}\|=5$. This determines \mathbf{w} up to sign. Find one such w.

Solution

Since $\mathbf{v}=(2,3)$ and $\mathbf{w}=\left(w_{x}, w_{y}\right)$ are perpendicular, the dot product of these two vectors must be zero.

$$
\begin{align*}
\mathbf{v} \cdot \mathbf{w} & =0 \\
(2,3) \cdot\left(w_{x}, w_{y}\right) & =0 \\
2 w_{x}+3 w_{y} & =0 \tag{1}
\end{align*}
$$

The magnitude of \mathbf{w} is known:

$$
\begin{equation*}
\|\mathbf{w}\|=\sqrt{w_{x}^{2}+w_{y}^{2}}=5 \tag{2}
\end{equation*}
$$

Solve equations (1) and (2) for w_{x} and w_{y}.

$$
w_{x}= \pm \frac{15}{\sqrt{13}} \quad \text { and } \quad w_{y}=\mp \frac{10}{\sqrt{13}}
$$

Therefore, one such \mathbf{w} is

$$
\mathbf{w}=\left(\frac{15}{\sqrt{13}},-\frac{10}{\sqrt{13}}\right) .
$$

